Reliable Re-encryption in Unreliable Clouds

Qin Liut¥, Chiu C. Tan?, Jie Wu?, and Guojun WangJr
School of Information Science and Engineering, Central South University, Changsha, Hunan Province, P. R. China, 410083
jr'Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA
Email:{qin.liu, cctan, jiewu} @temple.edu, csgjwang@mail.csu.edu.cn

Abstract—A key approach to secure cloud computing is for
the data owner to store encrypted data in the cloud, and issue
decryption keys to authorized users. Then, when a user is
revoked, the data owner will issue re-encryption commands to
the cloud to re-encrypt the data, to prevent the revoked user
from decrypting the data, and to generate new decryption keys to
valid users, so that they can continue to access the data. However,
since a cloud computing environment is comprised of many cloud
servers, such commands may not be received and executed by all
of the cloud servers due to unreliable network communications.
In this paper, we solve this problem by proposing a time-
based re-encryption scheme, which enables the cloud servers to
automatically re-encrypt data based on their internal clocks. Our
solution is built on top of a new encryption scheme, attribute-
based encryption, to allow fine-grain access control, and does not
require perfect clock synchronization for correctness.

Index Terms—Attribute-based encryption, cloud computing,
proxy re-encryption.

I. INTRODUCTION

The use of cloud computing is increasingly popular due to
the potential cost savings from outsourcing data to the cloud
service provider (CSP). One technique to protect the data from
a possible untrusted CSP is for the data owner to encrypt the
outsourced data [1], [2]. Flexible encryption schemes such as
attribute based encryption (ABE) [3]-[5] can be adopted to
provide fine grained access control.

ABE allows data to be encrypted using an access structure
comprised of different attributes. Instead of specific decryption
keys for specific files, users are issued attribute keys. Users
must have the necessary attributes that satisfy the access struc-
ture in order to decrypt a file. For example, a file encrypted
using the access structure {(ay A a2) V a3} means that either
a user with attributes «; and o, or a user with attribute asg,
can decrypt the file.

The key problem of storing encrypted data in the cloud lies
in revoking access rights from users. A user whose permission
is revoked will still retain the keys issued earlier, and thus
can still decrypt data in the cloud. A naive solution is to let
the data owner immediately re-encrypt the data, so that the
revoked users cannot decrypt the data using their old keys,
while distributing the new keys to the remaining authorized
users. This solution will lead to a performance bottleneck,
especially when there are frequent user revocations.

An alternative solution is to apply the proxy re-encryption
(PRE) technique [6], [7]. This approach takes advantage of
the abundant resources in a cloud by delegating the cloud to
re-encrypt data [8], [9]. This approach is also called command-

A

o
o
¥ o2 Data user
Data ‘
') Re,
instruction ’?f«’e;-f
Ty,
Data owner ! \O
Data user

Fig. 1.

A typical cloud environment

driven re-encryption scheme, where cloud servers execute re-
encryption while receiving commands from the data owner.

However, command-driven re-encryption schemes do not
consider the underlying system architecture of the cloud
environment. A cloud is essentially a large scale distributed
system where a data owner’s data is replicated over multiple
servers for high availability. As a distributed system, the cloud
will experience failures common to such systems, such as
server crashes and network outages. As a result, re-encryption
commands sent by the data owner may not propagate to all of
the servers in a timely fashion, thus creating security risks.

To illustrate, let us consider a cloud environment shown in
Fig. 1, where the data owner’s data is stored on cloud servers
CS1,CS5,CS3,CSy. Assume that the data owner issues to
C'S4 are-encryption command, which should be propagated to
CS1,CS;5,CSs. Due to a network outage, C'Ss did not receive
the command, and did not re-encrypt the data. At this time, if
revoked users query C'Ss, they can obtain the old ciphertext,
and can decrypt it using their old keys.

A better solution is to allow each cloud server to inde-
pendently re-encrypt data without receiving any command
from the data owner. In this paper, we propose a reliable
re-encryption scheme in unreliable clouds (R3 scheme for
short). R3 is a time-based re-encryption scheme, which allows
each cloud server to automatically re-encrypt data based on its
internal clock. The basic idea of the R3 scheme is to associate
the data with an access control and an access time. Each
user is issued keys associated with attributes and attribute
effective times. The data can be decrypted by the users using
the keys with attributes satisfying the access control, and
attribute effective times satisfying the access time. Unlike the
command-driven re-encryption scheme, the data owner and the
CSP share a secret key, with which each cloud server can re-
encrypt data by updating the data access time according to its

own internal clock.

Even through the R3 scheme relies on time, it does not
require perfect clock synchronization among cloud servers.
Classical clock synchronization techniques [10]-[13] that en-
sure loose clock synchronized in the cloud are sufficient. The
main contributions in this paper are as follows:

1) We propose an automatic, time-based, proxy re-
encryption scheme suitable for cloud environments with
unpredictable server crashes and network outages.

2) We extend an ABE scheme by incorporating timestamps
to perform proxy re-encryption.

3) Our solution does not require perfect clock synchro-
nization among all of the cloud servers to maintain
correctness.

II. RELATED WORK

Many researchers have proposed storing encrypted data in
the cloud to defend against the CSP [1], [2]. Under this
approach, users are revoked by having a third party to re-
encrypt data such that previous keys can no longer decrypt any
data [14]-[16]. The solution by [15] for instance, lets the data
owner issue a re-encryption key to an untrusted server to re-
encrypt the data. Their solution utilizes PRE [6], which allows
the server to re-encrypt the stored ciphertext to a different
cipertext that can only be decrypted using a different key.
During the process, the server does not learn the contents of
the cipertext or the decryption keys.

ABE is a new cryptographic technique that efficiently sup-
ports fine grained access control. The combination of PRE and
ABE was first introduced by [9], and extended by [8], [17]. In
[8], a hierarchical attribute-based encryption (HABE) scheme
is proposed to achieve high performance and full delegation.
The main difference between prior work and ours is that we do
not require the underlying cloud infrastructure to be reliable
in order to ensure correctness.

Our scheme relies on time to re-encrypt data. However, in a
cloud, the internal clock of each cloud server may differ. There
have been several solutions to this problem. For instance,
[10] proposed a probabilistic synchronization scheme, which
exchanges messages to get remote servers’ accurate clocks
with high probability. Work by [11] used message delay to
estimate the maximal difference between two communicating
nodes to synchronize the clocks. Work by [13] proposed a
clock synchronization scheme for cloud environments, which
uses an authoritative time source shared by all participants in
a transaction to achieve clock synchronization between virtual
cloud policy enforcement points. By applying these techniques
to achieve loose synchronization in the cloud, and to determine
the maximal time difference between the data owner and each
cloud server, our R3 scheme can always achieve correct access
control in unreliable clouds.

III. PRELIMINARY

A. Problem Formulation

We consider a cloud computing environment consisting of a
data owner, a cloud service provider (CSP) and multiple data

| TS, | TS, | TS, | TS, | 75, | T8, | TS,
ty 9] 2 t3 ty ts te 17
Fig. 2. Sample time slice
TABLE I
ALICE’S KEYS

Key Description

SK }Ll Keys for attributes a; for 7Sy

SKZ | Keys for attributes a,, for T'S;

SK gl Keys for attributes a; for 1'Sy,

SK o Keys for attributes a,, for T'Sy,

users. The data owner outsources his data in the form of a
set of files Fy,---, F, to the CSP. Each file is encrypted by
the data owner before uploading to the CSP. Data users that
want to access a particular file must first obtain the necessary
keys from the data owner in order to decrypt the file. The data
owner can also update the contents of a file after uploading it
to the CSP. This is termed a wrife command.

Each file, F, is encrypted with two parameters, time slice
and attributes. We divide time into time slices, and every time
slice is of equal length. We denote a particular time slice,
TS, with a subscript, where T'S; = [t;,t;+1). Fig.2 illustrates
this concept. Attributes are organized into an access structure,
A, which regulates access to a file. For example, a file with
attributes a1, g, 3 and A = {(a1 Aae) Vs }, requires either
both attributes «; and a9, or just as, to satisfy the access
structure. A file F can only be decrypted with keys that satisfy
both the access structure and time slice.

A data user, after being authenticated by the data owner,
is granted a set of keys, each of which is associated with an
attribute and an effective time that denotes the length of time
the user is authorized to possess the attributes. For example, if
Alice is authorized to possess attributes aq, . . ., a,, from T'S;
to T'S,,, she will be issued keys as is shown in Table 1.

The security requirements of the R3 scheme are as follows:

1) Access control correctness. This requires that a data
user with invalid keys cannot decrypt the file.

2) Data consistency. This requires that all data users who
request file F, should obtain the same content in the
same time slice.

3) Data confidentiality. The file content can only be
known to data users with valid keys. The CSP is not
considered a valid data user.

4) Efficiency. The cloud servers should not re-encrypt any
file unnecessarily. This means that a file that has not been
requested by any data user should not be re-encrypted.

B. Adversary Model

Our system considers two types of adversaries. The first
type of adversary is the CSP. The CSP adversary is considered
honest-but-curious. This means that the CSP will always

TABLE II
SUMMARY OF NOTATIONS

Notation | Description
PK System public key
UA Universal attributes
PK} Attribute a’s public key at T'S;
sk, Attribute a’s private key at T'S;
MK Master key
s Shared secret key
A Alice’s attributes
T Effective time of Alice’s attributes
A Access control
PK, User public key
SKuy User identity secret key
SK} , | User atribute secret key
with attribute a and time 7T'S;

correctly execute a given protocol, but may try to gain some
additional information about the stored data.

The second type of adversary is malicious data users. The
data user adversary will try to learn the file content that he is
not authorized to access. This adversary is assumed to possess
invalid keys (either with incorrect attributes or time). We also
assume the data user adversary can query any server in the
cloud. Note that both an honest-but-curious CSP and malicious
data users can exist together. However, we assume that the CSP
and data users will not collude to break the system, because
the CSP is considered to be honest-but-curious.

IV. BAsic R3

In the basic R3 scheme, we consider ideal conditions, where
the data owner and all of the cloud servers in the cloud
share a synchronized clock, and there are no transmission and
queueing delays when executing read and write commands.

A. Intuition

The data owner will first generate a shared secret key to the
CSP. Then, after the data owner encrypts each file with the
appropriate attribute structure and time slice, the data owner
uploads the file in the cloud. The CSP will replicate the file
to various cloud servers. Each cloud server will have a copy
of the shared secret key.

Let us assume that a cloud server stores an encrypted file
F with A and T'S;. When a user queries that cloud server, the
cloud server first uses its own clock to determine the current
time slice. Assuming that the current time slice is 71'S;tk,
the cloud server will automatically re-encrypt F' with T'S;
without receiving any command from the data owner. During
the process, the cloud server cannot gain the contents of the
cipertext and the new decryption keys. Only users with keys
satisfying A and 7'S; will be able to decrypt F.

B. Protocol Description

We divide the description of the basic R3 scheme into three
components: data owner initialization, data user read data and
data owner write data. We will rely on the following functions.
Table II shows the notations used in the description.

1) Setup() — (PK,MK,s) : At TSy, the data owner

publishes the system public key PK, keeps the system

Algorithm 1 Basic R3 (synchronized clock with no delays)

while Receive a write command W (F, seqgnum) at T'S; do
Commit the write command in order at the end of T'S;

while Receive a read command R(F) at T'S; do
Re-encrypt file with T'S;

master key M K secret, and sends the shared secret key
s to the cloud.

2) GenKey(PK, MK, s, PK aice, A, T) = (SK aice,
{SK Lice’ 7)) : When the data owner wants to grant data
user Alice attributes A with valid time period 7, the
data owner generates SK 4;;c. and {SKLHZC,A} using
the system public key, the system master key, the shared
secret key, Alice’s public key, Alice’s attributes and
eligible time.

3) Encrypt(PK,A,s,TS;,F) — (CL) : At TS;, the
data owner encrypts file ' with access structure A, and
produces ciphertext C?% using the system public key,
access structure, the system secret key, time slice, and
plaintext file.

4) Decrypt(PK,C}, SK atices {SK{ZHCE’GU h<j<n,) —
F : At T'S;, user U, who possesses version ¢ attribute
secret keys on all attributes in C'C}, recovers F' using
the system public key, the user identity secret key, and
the user attribute secret keys.

5) REncrypt(C%,s,TSiy) — CLTF: When the cloud
server wants to return a data user with the file at T'S;, 1,
it updates the ciphertext from C% to C’?k using the
shared secret key.

1) Data owner initialization: The data owner runs the Setup
function to initiate the system. When the data owner wants to
upload file F to the cloud server, it first defines an access
control A for F, and then determines the current time slice
T'S;. Finally, it runs the Encrypt function with A and T'S;
to output the ciphertext. When the data owner wants to grant
a set of attributes in a period of time to data user Alice, it
runs the GenKey function with artributes and effective times
to generate keys for Alice.

2) Data user read data: When data user Alice wants to
access file F at T'S;, she sends a read command R(F) to the
cloud server, where F' is the file name. On receiving the read
command R(F), the cloud server runs the REncrypt function
to re-encrypt the file with 7'S;. On receiving the ciphertext,
Alice runs the Decrypt function using keys satisfying A and
TS; to recover F.

3) Data owner write data: When the data owner wants to
write file F at T'5;, it will send a write command to the cloud
server in the form of: W (F, segnum), where seqnum is the
order of the write command. This seqnum is necessary for
ordering when the data owner issues multiple write commands
that have to take place in one time slice. On receiving the write
command, the cloud server will commit it at the end of T'S;.
Algorithm 1 shows the actions of the cloud server.

C. Security analysis

Access control correctness. It is clear that the correctness
of access control is most vulnerable when a 1'S changes. Let
us consider the case where Alice has keys with effective time
up to T'S;, and Bob has keys with effective time starting from
TS;t1. Assuming that the data owner updates file F to F’
such that a user querying the file at 7'S; should obtain F,
and a user querying the file at 7'S;; should obtain F’. The
property of access control correctness fails if Alice is able to
read F’ (attack 1), or if Bob is able to read F (attack 2).

In attack 1, Alice’s best time to launch an attack is just
before ¢;41, since she only has the keys to decrypt data up
to T'S;. However, the cloud server will commit the write
command at t;,4; as long as its own clock is consistent with
the data owner’s clock, so that Alice never reads F’, and thus
her attack fails.

In attack 2, Bob’s best time to launch an attack is just after
ti+1. Querying earlier than ¢;,,; does not help Bob since he
does not have the keys to decrypt the data. However, since the
cloud server will commit the write command at ¢, ; as long
as its own clock is consistent with the data owner’s clock,
Bob will never access F, but only F’. Therefore, our scheme
provides correct access control.

Data consistency. This property requires users that query
within the same 7S must receive the same data. Let us assume
that both Alice and Bob have valid keys for the appropriate
time slices, and we now want to show that so long as both
Alice and Bob query within the same time slice, they must
obtain the same data. Assuming that Alice and Bob both pick
TS; to attack our scheme, the best attack time for Alice is to
query just after ¢;, and for Bob is to query just before ¢; 1.
This attack is depicted in Fig. 3. According to the R3 scheme,
the cloud server will return data that has been committed in
t; to both Alice and Bob.

We first note that any write command that occurs after
Alice and before Bob does not affect the correctness of the
R3 scheme since this command will be committed at ¢, ;.
Furthermore, we have to ensure that all writes committed at ¢;
(what we are returning to Alice and Bob) must have already
arrived before ¢;. Since all parties’ clocks are consistent and
there are no delays, any write command committed at ¢; can
only be received by the cloud server before ;. Thus, the data
returned to Alice and Bob is consistent.

Data confidentiality. In our scheme, we only store en-
crypted data in the cloud. Since the R3 scheme preserves
the data confidentiality operations from HABE scheme, and
retain the same confidentiality properties, the cloud without
knowledge of keys cannot learn any useful information about
the stored data.

Data efficiency. The cloud server does not re-encrypt a file
until a data user requests that file. Based on the properties of
function REncrypt, when k > 1, we see that the cloud server
can combine the re-encrypt operations until receiving a file
access request.

W(F, seqnum)
Owner's |
Time -
tx'—l tx' tx'+l tx'+2
Cloud's } |
Time -
b1 & by G
Alice; R(F) Bob: R(F)

Fig. 3. Attacks to compromise the property of data consistency

Algorithm 2 Extended R3 (asynchronized clock with delays)

while Receive a write command W (F, t;11, seqnum) do
if Current time is earlier than ¢;; + « then
Build Window 1 for file F'
Commit the write command in Window ¢ at ¢;41 + «
else
Reject the write command
Inform the data owner to send write command earlier
while Receive a read request R(F,T'S;) do
if Current time is later than ¢;,; + « then
Re-encrypt the file in Window ¢ with T'S;
else
Hold on the read command until ¢, ; 4+ «

V. EXTENDED R3

In this section, we consider the scenario where there is
no synchronized clocks. We also consider transmission and
queueing delays during the write and read commands.

A. Protocol Description

We let the data owner and the cloud server agree on a
maximal waiting time «. Thus, the cloud server will wait
until #; + « to commit the write commands that should be
committed at t;, and to respond to the read commands for
reading data at 7'S;. The data owner and data user will include
additional information in their write or read commands. When
the data owner wants to update the file F at T'S;, he will issue
a command W (F,t;11, seqnum), where F is the file name,
t;+1 is when the updates have to take place and seqgnum is
the order of the write command. When the data user wants to
read the file F at T'S;, he will use a command R(F,TS;).

Then, we need to determine the maximal time difference
between the data owner and the cloud server. We denote this
time difference as /\, where A is no larger than the duration of
one time slice. In other words, when the data owner is at TS},
the cloud server’s time may be 7'S;_1, T'S;, or T'S;+1. We
let the data owner issue his write command before ¢;; when
he wants this update to be reflected in 7'S;;1. Algorithm 2
shows the actions of the cloud server.

B. Security Analysis

Access control correctness. Here, we need to show that Al-
gorithm 2 maintains the property of access control correctness

using the same attack 1 and attack 2 as the security analysis
in the basic R3 scheme.

In attack 1, Alice’s best time to launch her attack is just
before t;41, since she only has the keys to decrypt data up
to T'S;. However, the cloud server will commit the write
command at ;41 + «, so that Alice never reads F’, and thus
her attack fails.

In attack 2, Bob’s best time to launch his attack is just
after ¢;4;. Querying earlier than ¢, ; does not help Bob since
he does not have the keys to decrypt the data. However, the
cloud server will commit the write command at ¢;41 + ¢, and
hold the read command until committing all write commands.
Therefore, Bob never reads F, but only F’.

Data consistency. We use the same attack scenario as the
security analysis in the basic R3 scheme. The cloud server will
reject all of the write commands that should be committed at
t; 4+« if its time is past ¢; +«a. Then, the cloud server will hang
up all of the read commands for 7'S; until committing all of
the write commands at ¢; + «. Therefore, data is consistent.

The analyses for both data confidentiality and data effi-
ciency are the same as the basic R3 scheme.

VI. ADDITIONAL DISCUSSION

One concern with the R3 scheme design is that associating
a different ciphertext for every time slice will require users
to manage a lot of keys. The number of keys that the R3
scheme requires is related to the actual length of the time
slice. This length can be set according to different application
requirements. Thus, an application that expects to revoke users
on a monthly basis will have a longer time slice, and hence
have far fewer keys, than an application where membership
changes by the hour. Furthermore, issuing multiple keys up-
front is actually more efficient. Consider an alternative design
where each valid user was issued just one key. Now, every
time any user is revoked, the owner has to inform the CSP to
re-encrypt the previous ciphertext so as to prevent the revoked
user from decrypting it again. The owner then has to update
all of the remaining valid users with the new keys to allow
them to decrypt the new ciphertext. We argue that any scheme
that stores encrypted data in the cloud has to deal with the
issue of re-encryption and re-keying. Since the remaining users
may not be online all of the time, the re-keying process is
arguably more costly. A possible improvement is to let the
owner issue a valid user a special seed value which the user
can then use to generate keys on his own. The challenge here
is to prevent the user from generating additional keys beyond
what is authorized. This remains part of our future research.

Furthermore, we only let the data owner perform data
updates. This is inflexible for applications where users may
need to update the data as well. Our solution can be extended
to allow users to perform data updates in addition to data
owners. A ticketing scheme can be used. The data owner will
issue and sign a timestamp to authorize the user to perform a
write. The user will submit the ticket together with his updates
to the CSP, which will then apply the updates. The challenge

here is the time lag between when the data owner issues the
ticket and when the user’s request reaches the CSP. This time
lag may be unknown since the user may delay sending his
update to the cloud. An additional protocol will be required
to allow the CSP to reject update requests that are too close
to the time slice borders.

VII. CONCLUSION

In this paper, we proposed the R3 scheme, a new method for
managing access control based on the cloud server’s internal
clock. Our technique does not rely on the cloud to reliably
propagate re-encryption commands to all servers to ensure
access control correctness. We showed that our solutions
remain secure without perfect clock synchronization so long
as we can bound the time difference between the servers and
the data owner.

ACKNOWLEDGEMENTS

This research was supported in part by NSF grants ECCS
1128209, CNS 1065444, CCF 1028167, CNS 0948184, CCF
0830289; and National NSF of China under Grant No.
61073037, Hunan Provincial Science and Technology Program
under Grant No. 2010GK2003, and National 973 Basic Re-
search Program of China under Grant No. 2011CB302800.

REFERENCES

[1] S. Kamara and K. Lauter, “Cryptographic cloud storage,” Financial
Cryptography and Data Security, 2010.

[2] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, and I. Stoica, “A view of cloud
computing,” Communications of the ACM, 2010.

[3] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” Advances
in Cryptology—-EUROCRYPT, 2005.

[4] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” in Proc. of ACM
CCS, 2006.

[5] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in Proc. of IEEE Symposium on S&P, 2007.

[6] M. Blaze, G. Bleumer, and M. Strauss, “Divertible protocols and atomic
proxy cryptography,” Advances in Cryptology—-EUROCRYPT, 1998.

[7]1 A. Boldyreva, V. Goyal, and V. Kumar, “Identity-based encryption with
efficient revocation,” in Proc. of ACM CCS, 2008.

[8] G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-based encryption
for fine-grained access control in cloud storage services,” in Proc. of
ACM CCS (Poster), 2010.

[9] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and

fine-grained data access control in cloud computing,” in Proc. of IEEE

INFOCOM, 2010.

F. Cristian, “Probabilistic clock synchronization,” Distributed Comput-

ing, 1989.

K. Romer, “Time synchronization in ad hoc networks,” in Proc. of ACM

MobiHoc, 2001.

P. Ramanathan, K. Shin, and R. Butler, “Fault-tolerant clock synchro-

nization in distributed systems,” Computer, 2002.

N. Antonopoulos and L. Gillam, “Cloud Computing: Principles, Systems

and Applications,” Springer Publishing Company, 2010.

M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu, “Plutus:

Scalable secure file sharing on untrusted storage,” in Proc. of USENIX

FAST, 2003.

G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved proxy

re-encryption schemes with applications to secure distributed storage,”

ACM Transactions on Information and System Security, 2006.

S. Di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati,

“Over-encryption: management of access control evolution on out-

sourced data,” in Proc. of VLDB, 2007.

S. Yu, C. Wang, K. Ren, and W. Lou, “Attribute based data sharing with

attribute revocation,” in Proc. of ACM ASIACCS, 2010.

[10]
[11]
[12]
[13]

(14]

[15]

[16]

(17]

